Radiative Bhabhas in the IFR

Nick Blount
David Strom
Table of Contents

3. Software used
4. Predicted Bhabha rate
5. Plots of radial distribution of hits in forward endcap, with fits
6. Back of the envelope calculation of neutron hits in the IFR
7. Conclusions
8. Future Plans
Software and Runs Used

- Release: 15.7.1
- Package: PepBkgMon V00-00-02
- Simulation: Bhabha_generic_1deg.tcl
 - Uses Bhwide event generator
 - For angles greater than 1 degree in Bhabha rest frame
- Data: Run 44218 (January background run)
Predicted Bhabha rate

- The Born level differential cross section for Bhabhas is\(^1\):
 \[
 \frac{d\sigma}{d\omega} = \frac{a^2}{2s} \left[\frac{(1+\cos^4 \frac{\omega}{2})}{\sin^4 \frac{\omega}{2}} - 2\left(\frac{\cos^4 \frac{\omega}{2}}{\sin^2 \frac{\omega}{2}} \right) + \frac{(1+\cos^2 \frac{\omega}{2})}{2} \right]
 \]
- For small angles, this is approximately
 \[
 \frac{d\sigma}{d\omega} \approx 32a^2/s\omega^3,
 \]
 for a \(1/\omega^3\) distribution
- Using \(a = 1/137\) and \(s = 10.58^2\),
 \[
 \frac{d\sigma}{d\omega} = 18.6/\omega^3\text{nb}
 \]
- This gives a Bhabha rate of 29kHz for \(\omega > 1^0\) at \(10^{33}\text{cm}^2\)
Data Cont.: Radial Plots

- Note: Bhwide is a wide angle Bhabha simulator and is probably inaccurate for angles less than 10 degrees
- No noise: with noise added the noise dominates the hits from the Bhabhas
- Simulation scaled assuming 29kHz rate
- Data: Rate=10.113/Theta^3 Chisq=2.084
- Simulation: Rate=5.383/Theta^3 Chisq=1.483

Babar Collaboration Meeting
December 7, 2004
Neutron Calculation

• Using 1 neutron/5GeV (from Monday MDI meeting), .14 Amps/hour lost in each beam, 1-2 MeV neutrons, the predicted rate of interactions in the 2mm of gas in an IFR layer is roughly 94kHz.

• This is comparable to the noise rate in the IFR
Details and Conclusions

• Angular distribution of Bhabhas in the IFR looks reasonable
• Comparison with data consistent with significant backgrounds from Bhabhas
To Do

- Migrate to Release 16, PepBkgMon V00-01-17
- Produce more noiseless Bhabha MC
- Look into different event generators (Bhlumi, BbBrem, fix Bhwide small angle bug)
- Re-run simulation with extended detector model
- Start looking at predicted neutron rate from MC
Bibliography

1. Hep-ex 9910066v2
Homework Problem Details

- Beam loss: .2A each beam over 1.4 hours
- Turn Period: 7.336E-6 sec
- Beam Energies: LER 3.1, HER 9.0
- Neutron rate: 1/5GeV
- Cross Sections for 1-2 MeV neutrons:
 - C=1.8b, Ar=1.3b, F=2.7b, H=3.3b
- Gas: 65.5% Ar, 4.5% Isobutane, 30.0% Freon
- Intermediate Numbers:
- Beam loses 2.2E10GeV/s. Interaction Length=10.4g/cm²=3940cm