π^0 Skim Study in CM2

Minghui Lu

University of Oregon

For Fully Inclusive $b \rightarrow s\gamma$ group

Notre Dame-Oregon-Pisa-SLAC-UCSC
Outline

- Introduction
- π^0 skim cuts
- π^0 mass and energy spectrum
- The Comparison of π^0 mass spectrum between SP5 MC and run1 data
- Preliminary π^0 mass fit
- Outlook
Introduction

- π^0 is the dominant background for $b\rightarrow s\gamma$ signal in generic $B\bar{B}$ events
- π^0 correction receipe was provided by Neutral group based on $\tau\tau$ events for SP5 and SP6 (BAD870), but similar study is not done with inclusive events
- This is a first try to migrate current inclusive $b\rightarrow s\gamma$ analysis to CM2
- To understand π^0 spectrum in CM2, provide useful information for other CM2 analyses
π^0 skim

- **Skim Cuts**
 - BGFMultiHadron tag bit
 - $1.0 < e1\text{Mag} < 3.5$ GeV
 - 2nd Fox-Wolfram moment in overall CMS, $R2<0.9$
 - $n\text{Trk}>2$, from $n\text{GoodTrackLoose}$
 - $p1\text{Mag}<2.5$ GeV

- **Skim Efficiency**
 - $B^0\bar{B}^0$ MC events: $200k \rightarrow 25,393$, 12.7%
 - B^+B^- MC events: $200k \rightarrow 26,417$, 13.2%
 - On-Peak run1 data: $500k \rightarrow 45,395$, 9.1%
 - Off-Peak run1 data: $100k \rightarrow 7,490$, 7.5%
Selection of π^0 Candidate

- 2γ Mass cut:
 - $E_{\gamma_1}^* > 1.0$ GeV, from user defined HE γ List
 - $E_{\gamma_2} > 30$ MeV, from GoodPhotonLoose List
 - $50 < m_{2\gamma} < 250$ MeV
 - $1.0 < E_{2\gamma}^* < 3.5$ GeV

- Truth matching for MC:
 - GHit truth map
 - The mother <->daughter matching
π^0 spectrum (on-peak data)

Spectrum will be studied in 8 different $E_{\pi^0}^*$ bins:
1.0-1.2, 1.2-1.4, 1.4-1.6, 1.6-1.8,
1.8-2.0, 2.0-2.2, 2.2-2.4, 2.4-3.0
M_{π^0} in different $E_{\pi^0}^*$ bins (on-peak data)
π^0 spectrum for $B^0\bar{B}^0$ MC

Pi0Mass
- Entries: 56111
- Mean: 0.1607
- RMS: 0.05082

Pi0cmE
- Entries: 56111
- Mean: 1.395
- RMS: 0.3076

Mpi0 (Mpi0>0.05 && Mpi0<0.25)
- Entries: 14254
- Mean: 0.1323
- RMS: 0.01784

p^0 Skim Study in CM2 – p.8
M_{π^0} in 8 different $E^*_{\pi^0}$ bins ($B^0 \bar{B}^0$)
MC and Run1 data comparison

- on-off: On-peak - \(\frac{L_{on}}{L_{off}} \) off-peak

- Combine both \(B^0 \overline{B}^0 \) and \(B^+ B^- \), normalized to same number of Bs

\[\pi^0 \text{ spectrum} \]

![Graph of \(\pi^0 \) spectrum with data entries and statistical properties.]

- Entries: 112222
- Mean: 0.1607
- RMS: 0.05082

\(\pi^0 \) Skim Study in CM2 – p.10
\(\pi^0 \) mass fit function

- **The signal Model:**

 \[
 f(m) = A_g [f_1 G(m, \mu_1, \sigma_1) + (1 - f_1) G(m, \mu_2, \sigma_2)], \quad m > m_0
 \]

 \[
 f(m) = N \left[\frac{p \sigma_1 / \lambda}{(m_0 - m) + p \sigma_1 / \lambda} \right]^p, \quad m < m_0
 \]

 where \(m_0 = \mu_1 - \lambda \sigma_1 \)

 8 fit parameters: \(A_g, f_1, \mu_1, \sigma_1, \mu_2, \sigma_2, p \) and \(\lambda \).

- **Background:**

 \[
 f(m) = \frac{am^b}{(m^2 + c)^d}
 \]

 4 fit parameters: \(a, b, c, d \)
Preliminary π^0 mass fit

\begin{itemize}
 \item $\chi^2 / \text{ndf} = 114.5 / 42$
 \item Fraction: 0.9109 ± 0.0066
 \item Area: 43.76 ± 0.71
 \item Mean 1: 0.1347 ± 0.0001
 \item Sigma 1: 0.006113 ± 0.000086
 \item Mean 2: -0.07278 ± 0.02710
 \item Sigma 2/Sigma 1: 15.61 ± 0.45
 \item Lambda: 1.246 ± 0.043
 \item Poly: 1.915 ± 0.115
\end{itemize}

\begin{center}
\includegraphics[width=\textwidth]{Mpi0Truth}
\end{center}
Summary and Outlook

- A simple data MC comparison was done on π^0 skim
- Preliminary Mass fits on truth matched π^0 mass spectrum were performed, more complete mass fits are expected
- Only skim samples were studied so far, more cuts will be implemented, such as photon quality cut, fisher cut, etc
- The mass fits now are done by my personal codes, John and Francesca’s complete π^0/η mass fit package will be borrowed and migrated to CM2
- This study is intended to be done on full statistics (run1 to run4 data) once all cuts are finalized and codes are implemented