Progress on Silicon-Tungsten Calorimeter for SD

David Strom University of Oregon

- Design Consideration
- Silicon Detectors
- Electronics
- Some Mechanical Details

M. Breidenbach, D. Freytag, G. Haller, O. Milgrome
SLAC

R. Frey, D. Strom
UO

V. Radeka
BNL

American Linear Collider Meeting 13 July 03 – David Strom – UO
Primary ECAL Design Requirements

- Excellent separation of γ’s from charged particles
 \textit{Efficiency $> 95\%$ for energy flow}

- Good reconstruction of π^\pm, detection of neutral hadrons

- Reasonable EM energy resolution ($< 15\%/\sqrt{E}$)

- Reconstruct τ’s and measure polarization (separate π, ρ, a_1, e’s)

- Reconstruct Bhabhas and deconvolve luminosity spectra
 \textit{Position resolution $\sim 100\mu m$, bias $\sim 25\mu m$ in endcap}
Secondary ECAL Design Requirements

- Excellent electron identification in jets (tag and b/c quarks)

- Partial reconstruction of b/c hadrons in jets

- Good γ impact resolution for long lived SUSY neutrals
 $\sim 1 \text{ cm}$

- Good background immunity
 - Bunchlet identification
 - High granularity
SiW Design Consideration

- Transverse shower size scales with Molière radius (9mm in pure W, 16mm in pure Pb) ⇒ *Minimize gaps between layers of absorber* ⇒ *Use a high purity tungsten alloy*
- Sample between 1/2 and 2/3 of X_0 (1.75mm to 2.5mm of W)
- Allow for detector segmentation at a fraction of the Molière radius ⇒ *Use ~ 5mm pads*
Silicon Concept

- Readout each wafer with a single chip
- Bump bond chip to wafer
- To first order cost independent of pixels/wafer
- Hexagonal shape makes optimal use of Si wafer
- Channel count limited by power consumption and area of front end chip
- May want different pad layout in forward region
Silicon Design Details

- DC coupled detectors
- Two metal layers
 - Could a design with only one work?
- Keep Si design as simple as possible to reduce cost
- Cross talk look small with current electronics design
Electronics Design

- Chip area driven by feedback capacitor on charge integrator and 3V supply. Need 2000 MIP (8 pC) dynamic range for 500 GeV electrons. ⇒ 10pF feedback capacitor needed

- New design samples integrated ($\tau = 200$ns) signal after 1μs for each bunch train. Lowers cross talk, little gain variation with bunchlet number

- Timing at the 10ns level should be possible

- Current in input transistor pulsed duty cycle $< 10^{-3}$ 0.1mW/ch

- Currently estimating chip area and power needed for digital section
Si Prototypes

- Rough draft of design completed

 Waiting for chip area estimate to set grip spacing for bump-bonding

Bump Pad Array
detail B
Unit: mm
Traces to bump pads, typical
6.20+/−0.04
6.20+/−0.04
to pixels to pixels
to pixels to pixels
15 traces (maximum)
from pixels to a typical bump pad row
Each trace 0.006 wide

American Linear Collider Meeting 8 13 July 03 – David Strom – UO
Si Prototype properties – leakage current and noise

- Radiation damage to detectors is probably dominated by neutrons, $\sim 10 \times 10^{10}/\text{cm}^2$

 $\Rightarrow < 10\text{nA/pixel leakage current}$

- Expect typical leakage current at start of life $< 1\text{nA/pixel}$
- Noise from leakage current at end-of-life for 1μ sampling time (can be adjusted) and DC coupling scheme is < 350 electrons
• Largest source of electronics noise will be front-end input transistor, noise scales as

\[
\frac{C_{in}}{\sqrt{\tau} I^{1/4}} \propto \frac{C_{in}}{\sqrt{\tau} \text{power}^{1/4}}
\]

• Present design has noise:

\[
\sim 20 - 30e/\text{pf}
\]

For most channels the value of \(C_{\text{input}}\) is dominated by stray capacitance of the trace connecting the pixels to the electronics:

\[
C_{\text{input}} \sim 5.7\text{pF(pixel)} + 12\text{pF(trace)} + 10\text{pF(amp)} \sim 30\text{pF}
\]

\[\longrightarrow \sim 1000 \text{ electrons noise (c.f. 24,000 from MIP)}\]

• Analog power consumption will probably be driven by timing requirements (under investigation)
• Digital power may be dominated by drivers needed to get data off the chip

⇒ Data transmission schemes which minimize dissipation of heat on chip are under consideration

⇒ Maximum data rate/ chip are small << 3Mbits/s
Fitting it all together

- Cartoon of possible barrel calorimeter configuration
- Assume heat flows along tungsten and/or copper heat sink to cooling water (green)
- Longest path for heat flow $< 1.4\text{m}$
Layout of Individual calorimeter layers:
Critical parameter: minimum space between tungsten layers.

Config.	Radiation length	Molière Radius
100% W | 3.5mm | 9mm
92.5% W | 3.9mm | 10mm
+1mm gap | 5.5mm | 14mm
+1mmCu | 6.4mm | 17mm
Back of the envelope calculation of change in temperature:

- Thermal Conductivity of W alloy 120W/(K-m)
- Thermal Conductivity of Cu 400W/(K-m)

Need to reduce heat to below 100mW/wafer.

Physical model test in progress
Model of strip of detectors equivalent to blue region:
Conclusion

• Design of silicon detectors well underway

• Electronics rough draft complete
 ⇒ Prototypes will be ordered once area needed by the digital design is set

• Mechanical conceptual design started
 ⇒ 1mm gap between layers without a copper heat sink may be possible
 ⇒ Gap size depends crucially on power consumption
Near Term Plans

• Order Si prototypes – soon

• Confirm thermal model and explore best coupling method of chips to absorber

• Produce prototype electronics – next year

• Simulation, more effort needed here:
 – Optimize sampling for energy resolution
 – Optimize pixel layout
 – Would more granularity help?
 – How sensitive is energy flow to Molière radius?