Study of Energy Flow in Jet Reconstruction
R. Frey & M. Iwasaki, Univ. of Oregon

- Good jet reconstruction essential to explore and make use of all decay modes
 - multi-jet masses: e.g. Zh vs ZZ vs WW
 - reconstruct parton angles to extract quantum numbers, anomalous moments, e.g. WW, $t\bar{t}$, $t \rightarrow bq'q''$

- Use combination of tracker and calorimeter which provides best resolution:
 - tracker for h^\pm, EM cal. for π^0 (HAD cal. for K_L^0, etc.)

- Requires excellent $\gamma - h^\pm$ id. \Rightarrow EM Cal. segmentation

- Realistic modelling requires more-than-primitive cal. clustering algorithm(s)

This Study:

- Develop EFlow technique in LCD simulation
- Implications for detector design in terms of physics benchmarks
- Compare to other techniques for jet recon.

- Start with LCD Fast Simulation
- Move to Full Sim. (Gizmo/GEANT 4), clustering alg. (c.f. N. Graf talk)
The LCD Fast Simulation (Cal.)

- The L, S (and P) detectors
 - different
 - optimized for ease of simulation description (*not* cost)
- L and S with highly segmented EM Cal for EFlow
- One Cal. shower ("cluster") per MC particle
- Energies and momenta smeared by standard gaussian parameterizations
- positions also smeared in 3-D.
- helical extrapolation of charged particles through tracker and calorimeter
- Capability to merge clusters to produce a little realism
- Same framework as Full Sim. (root or JAS)
Ident. and measurement of Photons

- Here, used $e^+e^- \rightarrow ZZ \rightarrow 4q$

- Start by looking at all Cal. clusters. Use to id. photons:
- Longitudinal depth of shower max. (cluster max. or shower start)
- No charged tracks overlap with cluster
 - helical extrapolation of tracks to cluster position
 - 2-D separation (bend, non-bend)
- Nearest charged track does not give $p = E$
- Combine these photon candidates with charged tracks \rightarrow find jets
\[R = \text{(cluster radial position)} - \text{(inner wall of cal.)} \]

- **S detector (top photons; bottom }^{\pm} \text{):**

- **L detector (top photons; bottom }^{\pm} \text{):**
Separation of Cluster and nearest charged track (extrapolated)

Small Detector: $BR^2 = 3.4$ T-m2, $R_m = 0.9$ cm

- Cluster is due to a π^\pm:

- Cluster is due to a γ:
Separation between Cluster and nearest charged track (extrapolated)

Large Detector: $BR^2 = 12$ T-m2, $R_m = 1.6$ cm

- Cluster is due to a π^\pm:

- Cluster is due to a γ:
Combine bend \oplus non-bend $\equiv d2D$

Also look at $dE \equiv (\text{cluster } E) - (p \text{ of nearest track})$

Small Detector

- Cluster is due to a π^\pm:

- Cluster is due to a γ:
Combine bend or non-bend \(\equiv d2D \)

Also look at \(dE \equiv (\text{cluster } E) - (p \text{ of nearest track}) \)

Large Detector

- Cluster is due to a \(\pi^\pm \):

- Cluster is due to a \(\gamma \)
Jet-Jet Mass in $e^+e^- \rightarrow ZZ \rightarrow \text{jets}$

- Use thrust axis to divide event: 2 jets vs 2 jets (typical)
 - simply add additional jets if > 2 per hemisphere
 - no “extra” jet-jet combinations

- Start with unsmeared MC particles:
• Exclude final-state neutrinos:

![Graph with JJ Mass distributions]

- JJM
 - Nent = 90
 - Mean = 88.28
 - RMS = 9.211

• Also exclude K^0_L's:

![Graph with JJ Mass distributions]

- JJM
 - Nent = 90
 - Mean = 82.94
 - RMS = 11.95
• Fast MC Simulation – Charged Tracks Only:

![Graph of JJ Mass distribution for Charged Tracks Only]
- JJM: Nent = 76, Mean = 53.7, RMS = 15.78

• Fast MC Simulation – Cal. Clusters Only:

![Graph of JJ Mass distribution for Cal. Clusters Only]
- JJM: Nent = 74, Mean = 85.52, RMS = 20.25
- Energy Flow - Detector S; $d2D > 0.5 \text{ cm}$, $(dE > 5 \text{ GeV})$, no R cut:

![Graph showing energy distribution for Detector S](image)

- Energy Flow - Detector L; $d2D > 1.5 \text{ cm}$, $(dE > 5 \text{ GeV})$, no R cut:

![Graph showing energy distribution for Detector L](image)
As expected, E Flow gives better resolution than clusters (or tracks) alone.

No parameter optimization or wide study of inputs, but

E Flow γ multiplicity \(\approx \) charged mult.

\(R \) cut (shower position) cut does \textit{not} help, since
 - excludes some fake photons,
 - but also excludes neutral hadrons

S detector requires track–cluster separation \((d2D)\) of 1 cm or less

L is more forgiving - broad minimum up to \(\sim 5 \) cm
Summary

- A start . . .
- Some optimization possible to nudge Fast Sim. EFlow \rightarrow unsmeared 4-vector
- But clearly most important step is to use fully simulated MC and a realistic clustering algorithm
- Expect challenges with pattern recognition – Is it better than using cal.-only?
- Important implications for detector cost and size
 - figure of merit is BR^2/R_m
 - Can one construct sufficiently fine granularity at modest R and cost?